导读

本文是技术人面试系列实战算法篇,面试中关于实战算法都需要了解哪些内容?一文带你详细了解,欢迎收藏!

1、URL黑名单(布隆过滤器)

100亿黑名单URL,每个64B,问这个黑名单要怎么存?判断一个URL是否在黑名单中
散列表:
如果把黑名单看成一个集合,将其存在hashmap中,貌似太大了,需要640G,明显不科学。
布隆过滤器:
它实际上是一个很长的二进制矢量和一系列随机映射函数。
可以用来判断一个元素是否在一个集合中。它的优势是只需要占用很小的内存空间以及有着高效的查询效率。对于布隆过滤器而言,它的本质是一个位数组:位数组就是数组的每个元素都只占用1 bit,并且每个元素只能是0或者1。
在数组中的每一位都是二进制位。布隆过滤器除了一个位数组,还有K个哈希函数。当一个元素加入布隆过滤器中的时候,会进行如下操作:
  • 使用K个哈希函数对元素值进行K次计算,得到K个哈希值。
  • 根据得到的哈希值,在位数组中把对应下标的值置为1。

2、词频统计(分文件)

2GB内存在20亿整数中找到出现次数最多的数
通常做法是使用哈希表对出现的每一个数做词频统计,哈希表的key是某个整数,value记录整数出现的次数。本题的数据量是20亿,有可能一个数出现20亿次,则为了避免溢出,哈希表的key是32位(4B),value也是32位(4B),那么一条哈希表的记录就需要占用8B。
当哈希表记录数为2亿个时,需要16亿个字节数(8*2亿),需要至少1.6GB内存(16亿/2^30,1GB==2^30个字节==10亿)。则20亿个记录,至少需要16GB的内存,不符合题目要求。
解决办法是将20亿个数的大文件利用哈希函数分成16个小文件,根据哈希函数可以把20亿条数据均匀分布到16个文件上,同一种数不可能被哈希函数分到不同的小文件上,假设哈希函数够好。然后对每一个小文件用哈希函数来统计其中每种数出现的次数,这样我们就得到16个文件中出现次数最多的数,接着从16个数中选出次数最大的那个key即可。

3、未出现的数(bit数组)

40亿个非负整数中找到没有出现的数
对于原问题,如果使用哈希表来保存出现过的数,那么最坏情况下是40亿个数都不相同,那么哈希表则需要保存40亿条数据,一个32位整数需要4B,那么40亿*4B= 160亿个字节,一般大概10亿个字节的数据需要1G的空间,那么大概需要16G的空间,这不符合要求。
我们换一种方式,申请一个bit数组,数组大小为4294967295,大概为40亿bit,40亿/8=5亿字节,那么需要0.5G空间,bit数组的每个位置有两种状态0和1,那么怎么使用这个bit数组呢?呵呵,数组的长度刚好满足我们整数的个数范围,那么数组的每个下标值对应4294967295中的一个数,逐个遍历40亿个无符号数,例如,遇到20,则bitArray[20]=1;遇到666,则bitArray[666]=1,遍历完所有的数,将数组相应位置变为1。
40亿个非负整数中找到一个没有出现的数,内存限制10MB
10亿个字节的数据大概需要1GB空间处理,那么10MB内存换算过来就是可以处理1千万字节的数据,也就是8千万bit,对于40亿非负整数如果申请bit数组的话,40亿bit /0.8亿bit=50,那么这样最少也得分50块来处理,下面就以64块来进行分析解答吧。
总结一下进阶的解法:

1.根据10MB的内存限制,确定统计区间的大小,就是第二次遍历时的bitArr大小。

2.利用区间计数的方式,找到那个计数不足的区间,这个区间上肯定有没出现的数。
3.对这个区间上的数做bit map映射,再遍历bit map,找到一个没出现的数即可。
自己的想法
如果只是找一个数,可以高位模运算,写到64个不同的文件,然后在最小的文件中通过bitArray一次处理掉。
40亿个无符号整数,1GB内存,找到所有出现两次的数
对于原问题,可以用bit map的方式来表示数出现的情况。具体地说,是申请一个长度为4294967295×2的bit类型的数组bitArr,用2个位置表示一个数出现的词频,1B占用8个bit,所以长度为4294967295×2的bit类型的数组占用1GB空间。怎么使用这个bitArr数组呢?遍历这40亿个无符号数,如果初次遇到num,就把bitArr[num2+1]和bitArr[num2]设置为01,如果第二次遇到num,就把bitArr[num2+1]和bitArr[num2]设置为10,如果第三次遇到num,就把bitArr[num2+1]和bitArr[num2]设置为11。以后再遇到num,发现此时bitArr[num2+1]和bitArr[num2]已经被设置为11,就不再做任何设置。遍历完成后,再依次遍历bitArr,如果发现bitArr[i2+1]和bitArr[i2]设置为10,那么i就是出现了两次的数。

4、重复URL(分机器)

找到100亿个URL中重复的URL
原问题的解法使用解决大数据问题的一种常规方法:把大文件通过哈希函数分配到机器,或者通过哈希函数把大文件拆成小文件。一直进行这种划分,直到划分的结果满足资源限制的要求。首先,你要向面试官询问在资源上的限制有哪些,包括内存、计算时间等要求。在明确了限制要求之后,可以将每条URL通过哈希函数分配到若干机器或者拆分成若干小文件,这里的“若干”由具体的资源限制来计算出精确的数量。
例如,将100亿字节的大文件通过哈希函数分配到100台机器上,然后每一台机器分别统计分给自己的URL中是否有重复的URL,同时哈希函数的性质决定了同一条URL不可能分给不同的机器;或者在单机上将大文件通过哈希函数拆成1000个小文件,对每一个小文件再利用哈希表遍历,找出重复的URL;或者在分给机器或拆完文件之后,进行排序,排序过后再看是否有重复的URL出现。总之,牢记一点,很多大数据问题都离不开分流,要么是哈希函数把大文件的内容分配给不同的机器,要么是哈希函数把大文件拆成小文件,然后处理每一个小数量的集合。

5、TOPK搜索(小根堆)

海量搜索词汇,找到最热TOP100词汇的方法
最开始还是用哈希分流的思路来处理,把包含百亿数据量的词汇文件分流到不同的机器上,具体多少台机器由面试官规定或者由更多的限制来决定。对每一台机器来说,如果分到的数据量依然很大,比如,内存不够或其他问题,可以再用哈希函数把每台机器的分流文件拆成更小的文件处理。
处理每一个小文件的时候,哈希表统计每种词及其词频,哈希表记录建立完成后,再遍历哈希表,遍历哈希表的过程中使用大小为100的小根堆来选出每一个小文件的top100(整体未排序的top100)。每一个小文件都有自己词频的小根堆(整体未排序的top100),将小根堆里的词按照词频排序,就得到了每个小文件的排序后top100。然后把各个小文件排序后的top100进行外排序或者继续利用小根堆,就可以选出每台机器上的top100。不同机器之间的top100再进行外排序或者继续利用小根堆,最终求出整个百亿数据量中的top100。对于top K的问题,除哈希函数分流和用哈希表做词频统计之外,还经常用堆结构和外排序的手段进行处理。

6、中位数(单向二分查找)

10MB内存,找到100亿整数的中位数
①内存够:内存够还慌什么啊,直接把100亿个全部排序了,你用冒泡都可以…然后找到中间那个就可以了。但是你以为面试官会给你内存??
②内存不够:题目说是整数,我们认为是带符号的int,所以4字节,占32位。
假设100亿个数字保存在一个大文件中,依次读一部分文件到内存(不超过内存的限制),将每个数字用二进制表示,比较二进制的最高位(第32位,符号位,0是正,1是负),如果数字的最高位为0,则将这个数字写入file_0文件中;如果最高位为1,则将该数字写入file_1文件中。
从而将100亿个数字分成了两个文件,假设file_0文件中有60亿个数字,file_1文件中有40亿个数字。那么中位数就在file_0文件中,并且是file_0文件中所有数字排序之后的第10亿个数字。(file_1中的数都是负数,file_0中的数都是正数,也即这里一共只有40亿个负数,那么排序之后的第50亿个数一定位于file_0中)
现在,我们只需要处理file_0文件了(不需要再考虑file_1文件)。对于file_0文件,同样采取上面的措施处理:将file_0文件依次读一部分到内存(不超内存限制),将每个数字用二进制表示,比较二进制的次高位(第31位),如果数字的次高位为0,写入file_0_0文件中;如果次高位为1,写入file_0_1文件中。
现假设file_0_0文件中有30亿个数字,file_0_1中也有30亿个数字,则中位数就是:file_0_0文件中的数字从小到大排序之后的第10亿个数字。
抛弃file_0_1文件,继续对file_0_0文件根据次次高位(第30位)划分,假设此次划分的两个文件为:file_0_0_0中有5亿个数字,file_0_0_1中有25亿个数字,那么中位数就是file_0_0_1文件中的所有数字排序之后的 第5亿个数。
按照上述思路,直到划分的文件可直接加载进内存时,就可以直接对数字进行快速排序,找出中位数了。

7、短域名系统(缓存)

设计短域名系统,将长URL转化成短的URL.
(1)利用放号器,初始值为0,对于每一个短链接生成请求,都递增放号器的值,再将此值转换为62进制(a-zA-Z0-9),比如第一次请求时放号器的值为0,对应62进制为a,第二次请求时放号器的值为1,对应62进制为b,第10001次请求时放号器的值为10000,对应62进制为sBc。
(2)将短链接服务器域名与放号器的62进制值进行字符串连接,即为短链接的URL,比如:t.cn/sBc。
(3)重定向过程:生成短链接之后,需要存储短链接到长链接的映射关系,即sBc ->URL,浏览器访问短链接服务器时,根据URL Path取到原始的链接,然后进行302重定向。映射关系可使用K-V存储,比如Redis或Memcache。

8、海量评论入库(消息队列)

假设有这么一个场景,有一条新闻,新闻的评论量可能很大,如何设计评论的读和写
前端页面直接给用户展示、通过消息队列异步方式入库
读可以进行读写分离、同时热点评论定时加载到缓存

9、在线/并发用户数(Redis)

显示网站的用户在线数的解决思路
维护在线用户表
使用Redis统计
显示网站并发用户数
  1. 每当用户访问服务时,把该用户的ID写入ZSORT队列,权重为当前时间;
  2. 根据权重(即时间)计算一分钟内该机构的用户数Zrange;
  3. 删掉一分钟以上过期的用户Zrem;

10、热门字符串(前缀树)

假设目前有1000w个记录(这些查询串的重复度比较高,虽然总数是1000w,但如果除去重复后,则不超过300w个)。请统计最热门的10个查询串,要求使用的内存不能超过1G。(一个查询串的重复度越高,说明查询它的用户越多,也就越热门。)
HashMap法
虽然字符串总数比较多,但去重后不超过300w,因此,可以考虑把所有字符串及出现次数保存在一个HashMap中,所占用的空间为300w*(255+4)≈777M(其中,4 表示整数占用的4个字节)。由此可见,1G的内存空间完全够用。
思路如下
首先,遍历字符串,若不在map中,直接存入map,value记为1;若在map中,则把对应的value加1,这一步时间复杂度O(N)
接着遍历map,构建一个10个元素的小顶堆,若遍历到的字符串的出现次数大于堆顶字符串的出现次数,则进行替换,并将堆调整为小顶堆。
遍历结束后,堆中10个字符串就是出现次数最多的字符串。这一步时间复杂度O(Nlog10)
前缀树法
当这些字符串有大量相同前缀时,可以考虑使用前缀树来统计字符串出现的次数,树的结点保存字符串出现次数,0表示没有出现。
思路如下
在遍历字符串时,在前缀树中查找,如果找到,则把结点中保存的字符串次数加1,否则为这个字符串构建新结点,构建完成后把叶子结点中字符串的出现次数置为1。
最后依然使用小顶堆来对字符串的出现次数进行排序。

11、红包算法

线性切割法,一个区间切N-1刀。越早越多
二倍均值法,【0~剩余金额 / 剩余人数*2】中随机,相对均匀

12、手写快排

public class QuickSort {
    public static void swap(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
    /* 常规快排 */
    public static void quickSort1(int[] arr, int L , int R) {
        if (L > R)  return;
        int M = partition(arr, L, R);
        quickSort1(arr, L, M - 1);
        quickSort1(arr, M + 1, R);
    }
    public static int partition(int[] arr, int L, int R) {
        if (L > R) return -1;
        if (L == R) return L;
        int lessEqual = L - 1;
        int index = L;
        while (index < R) {
            if (arr[index] <= arr[R])
                swap(arr, index, ++lessEqual);
            index++;
        }
        swap(arr, ++lessEqual, R);
        return lessEqual;
    }
    /* 荷兰国旗 */
    public static void quickSort2(int[] arr, int L, int R) {
        if (L > R)  return;
        int[] equalArea = netherlandsFlag(arr, L, R);
        quickSort2(arr, L, equalArea[0] - 1);
        quickSort2(arr, equalArea[1] + 1, R);
    }
    public static int[] netherlandsFlag(int[] arr, int L, int R) {
        if (L > R) return new int[] { -1, -1 };
        if (L == R) return new int[] { L, R };
        int less = L - 1;
        int more = R;
        int index = L;
        while (index < more) {
            if (arr[index] == arr[R]) {
                index++;
            } else if (arr[index] < arr[R]) {
                swap(arr, index++, ++less);
            } else {
                swap(arr, index, --more);
            }
        }
        swap(arr, more, R);
        return new int[] { less + 1, more };
    }

    // for test
    public static void main(String[] args) {
        int testTime = 1;
        int maxSize = 10000000;
        int maxValue = 100000;
        boolean succeed = true;
        long T1=0,T2=0;
        for (int i = 0; i < testTime; i++) {
            int[] arr1 = generateRandomArray(maxSize, maxValue);
            int[] arr2 = copyArray(arr1);
            int[] arr3 = copyArray(arr1);
//            int[] arr1 = {9,8,7,6,5,4,3,2,1};
            long t1 = System.currentTimeMillis();
            quickSort1(arr1,0,arr1.length-1);
            long t2 = System.currentTimeMillis();
            quickSort2(arr2,0,arr2.length-1);
            long t3 = System.currentTimeMillis();
            T1 += (t2-t1);
            T2 += (t3-t2);
            if (!isEqual(arr1, arr2) || !isEqual(arr2, arr3)) {
                succeed = false;
                break;
            }
        }
        System.out.println(T1+" "+T2);
//        System.out.println(succeed ? "Nice!" : "Oops!");
    }

    private static int[] generateRandomArray(int maxSize, int maxValue) {
        int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = (int) ((maxValue + 1) * Math.random()) 
                        - (int) (maxValue * Math.random());
        }
        return arr;
    }
    private static int[] copyArray(int[] arr) {
        if (arr == null)  return null;
        int[] res = new int[arr.length];
        for (int i = 0; i < arr.length; i++) {
            res[i] = arr[i];
        }
        return res;
    }
    private static boolean isEqual(int[] arr1, int[] arr2) {
        if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) 
            return false;
        if (arr1 == null && arr2 == null) 
            return true;
        if (arr1.length != arr2.length) 
            return false;
        for (int i = 0; i < arr1.length; i++)
            if (arr1[i] != arr2[i])
                return false;
        return true;
    }
    private static void printArray(int[] arr) {
        if (arr == null) 
            return;
        for (int i = 0; i < arr.length; i++) 
            System.out.print(arr[i] + " ");
        System.out.println();
    }
}

13、手写归并

    public static void merge(int[] arr, int L, int M, int R) {
        int[] help = new int[R - L + 1];
        int i = 0;
        int p1 = L;
        int p2 = M + 1;
        while (p1 <= M && p2 <= R)
            help[i++] = arr[p1] <= arr[p2] ? arr[p1++] : arr[p2++];
        while (p1 <= M)
            help[i++] = arr[p1++];
        while (p2 <= R)
            help[i++] = arr[p2++];
        for (i = 0; i < help.length; i++)
            arr[L + i] = help[i];
    }
    public static void mergeSort(int[] arr, int L, int R) {
        if (L == R)
            return;
        int mid = L + ((R - L) >> 1);
        process(arr, L, mid);
        process(arr, mid + 1, R);
        merge(arr, L, mid, R);
    }
    public static void main(String[] args) {
        int[] arr1 = {9,8,7,6,5,4,3,2,1};
        mergeSort(arr, 0, arr.length - 1);
        printArray(arr);
    }

    14、手写堆排

    // 堆排序额外空间复杂度O(1)
    public static void heapSort(int[] arr) {
        if (arr == null || arr.length < 2)
            return;
        for (int i = arr.length - 1; i >= 0; i--)
            heapify(arr, i, arr.length);
        int heapSize = arr.length;
        swap(arr, 0, --heapSize);
        // O(N*logN)
        while (heapSize > 0) { // O(N)
            heapify(arr, 0, heapSize); // O(logN)
            swap(arr, 0, --heapSize); // O(1)
        }
    }
    // arr[index]刚来的数,往上
    public static void heapInsert(int[] arr, int index) {
        while (arr[index] > arr[(index - 1) / 2]) {
            swap(arr, index, (index - 1) / 2);
            index = (index - 1) / 2;
        }
    }
    // arr[index]位置的数,能否往下移动
    public static void heapify(int[] arr, int index, int heapSize) {
        int left = index * 2 + 1; // 左孩子的下标
        while (left < heapSize) { // 下方还有孩子的时候
            // 两个孩子中,谁的值大,把下标给largest
            // 1)只有左孩子,left -> largest
            // 2) 同时有左孩子和右孩子,右孩子的值<= 左孩子的值,left -> largest
            // 3) 同时有左孩子和右孩子并且右孩子的值> 左孩子的值, right -> largest
            int largest = left+1 < heapSize && arr[left+1]> arr[left] ? left+1 : left;
            // 父和较大的孩子之间,谁的值大,把下标给largest
            largest = arr[largest] > arr[index] ? largest : index;
            if (largest == index)
                break;
            swap(arr, largest, index);
            index = largest;
            left = index * 2 + 1;
        }
    }
    public static void swap(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
    public static void main(String[] args) {
        int[] arr1 = {9,8,7,6,5,4,3,2,1};
        heapSort(arr1);
        printArray(arr1);
    }

    15、手写单例

      public class Singleton {
          private volatile static Singleton singleton;
          private Singleton() {}
          public static Singleton getSingleton() {
              if (singleton == null) {
                  synchronized (Singleton.class) {
                      if (singleton == null) {
                          singleton = new Singleton();
                      }
                  }
              }
              return singleton;
          }
      }

      16、手写LRUcache

          // 基于linkedHashMap
          public class LRUCache {
              private LinkedHashMap<Integer,Integer> cache;
              private int capacity;   //容量大小
              public LRUCache(int capacity) {
                  cache = new LinkedHashMap<>(capacity);
                  this.capacity = capacity;
              }
              public int get(int key) {
                  //缓存中不存在此key,直接返回
                  if(!cache.containsKey(key)) {
                      return -1;
                  }
                  int res = cache.get(key);
                  cache.remove(key);   //先从链表中删除
                  cache.put(key,res);  //再把该节点放到链表末尾处
                  return res;
              }
              public void put(int key,int value) {
                  if(cache.containsKey(key)) {
                      cache.remove(key); //已经存在,在当前链表移除
                  }
                  if(capacity == cache.size()) {
                      //cache已满,删除链表头位置
                      Set<Integer> keySet = cache.keySet();
                      Iterator<Integer> iterator = keySet.iterator();
                      cache.remove(iterator.next());
                  }
                  cache.put(key,value);  //插入到链表末尾
              }
          }

          17、手写线程池

            //手写双向链表
            class LRUCache {
                class DNode {
                    DNode prev;
                    DNode next;
                    int val;
                    int key;
                }
                Map<Integer, DNode> map = new HashMap<>();
                DNode head, tail;
                int cap;
                public LRUCache(int capacity) {
                    head = new DNode();
                    tail = new DNode();
                    head.next = tail;
                    tail.prev = head;
                    cap = capacity;
                }
                public int get(int key) {
                    if (map.containsKey(key)) {
                        DNode node = map.get(key);
                        removeNode(node);
                        addToHead(node);
                        return node.val;
                    } else {
                        return -1;
                    }
                }
                public void put(int key, int value) {
                    if (map.containsKey(key)) {
                        DNode node = map.get(key);
                        node.val = value;
                        removeNode(node);
                        addToHead(node);
                    } else {
                        DNode newNode = new DNode();
                        newNode.val = value;
                        newNode.key = key;
                        addToHead(newNode);
                        map.put(key, newNode);
                        if (map.size() > cap) {
                            map.remove(tail.prev.key);
                            removeNode(tail.prev);
                        }
                    }
                }
                public void removeNode(DNode node) {
                    DNode prevNode = node.prev;
                    DNode nextNode = node.next;
                    prevNode.next = nextNode;
                    nextNode.prev = prevNode;
                }
                public void addToHead(DNode node) {
                    DNode firstNode = head.next;
                    head.next = node;
                    node.prev = head;
                    node.next = firstNode;
                    firstNode.prev = node;
                }
            }

              //手写双向链表
              class LRUCache {
                  class DNode {
                      DNode prev;
                      DNode next;
                      int val;
                      int key;
                  }
                  Map<Integer, DNode> map = new HashMap<>();
                  DNode head, tail;
                  int cap;
                  public LRUCache(int capacity) {
                      head = new DNode();
                      tail = new DNode();
                      head.next = tail;
                      tail.prev = head;
                      cap = capacity;
                  }
                  public int get(int key) {
                      if (map.containsKey(key)) {
                          DNode node = map.get(key);
                          removeNode(node);
                          addToHead(node);
                          return node.val;
                      } else {
                          return -1;
                      }
                  }
                  public void put(int key, int value) {
                      if (map.containsKey(key)) {
                          DNode node = map.get(key);
                          node.val = value;
                          removeNode(node);
                          addToHead(node);
                      } else {
                          DNode newNode = new DNode();
                          newNode.val = value;
                          newNode.key = key;
                          addToHead(newNode);
                          map.put(key, newNode);
                          if (map.size() > cap) {
                              map.remove(tail.prev.key);
                              removeNode(tail.prev);
                          }
                      }
                  }
                  public void removeNode(DNode node) {
                      DNode prevNode = node.prev;
                      DNode nextNode = node.next;
                      prevNode.next = nextNode;
                      nextNode.prev = prevNode;
                  }
                  public void addToHead(DNode node) {
                      DNode firstNode = head.next;
                      head.next = node;
                      node.prev = head;
                      node.next = firstNode;
                      firstNode.prev = node;
                  }
              }

              19、手写阻塞队列

               

              20、手写多线程交替打印ABC

              package com.demo.test;
              import java.util.concurrent.locks.Condition;
              import java.util.concurrent.locks.ReentrantLock;
              public class syncPrinter implements Runnable{
                  // 打印次数
                  private static final int PRINT_COUNT = 10;
                  private final ReentrantLock reentrantLock;
                  private final Condition thisCondtion;
                  private final Condition nextCondtion;
                  private final char printChar;
                  public syncPrinter(ReentrantLock reentrantLock, Condition thisCondtion, Condition nextCondition, char printChar) {
                      this.reentrantLock = reentrantLock;
                      this.nextCondtion = nextCondition;
                      this.thisCondtion = thisCondtion;
                      this.printChar = printChar;
                  }
                  @Override
                  public void run() {
                      // 获取打印锁 进入临界区
                      reentrantLock.lock();
                      try {
                          // 连续打印PRINT_COUNT            for (int i = 0; i < PRINT_COUNT; i++) {
                              //打印字符
                              System.out.print(printChar);
                              // 使用nextCondition唤醒下一个线程
                              // 因为只有一个线程在等待,所以signal或者signalAll都可以
                              nextCondtion.signal();
                              // 不是最后一次则通过thisCondtion等待被唤醒
                              // 必须要加判断,不然虽然能够打印10次,但10次后就会直接死锁
                              if (i < PRINT_COUNT - 1) {
                                  try {
                                      // 本线程让出锁并等待唤醒
                                      thisCondtion.await();
                                  } catch (InterruptedException e) {
                                      e.printStackTrace();
                                  }
                              }
                          }
                      } finally {
                          reentrantLock.unlock();
                      }
                  }
              
                  public static void main(String[] args) throws InterruptedException {
                      ReentrantLock lock = new ReentrantLock();
                      Condition conditionA = lock.newCondition();
                      Condition conditionB = lock.newCondition();
                      Condition conditionC = lock.newCondition();
                      Thread printA = new Thread(new syncPrinter(lock, conditionA, conditionB,'A'));
                      Thread printB = new Thread(new syncPrinter(lock, conditionB, conditionC,'B'));
                      Thread printC = new Thread(new syncPrinter(lock, conditionC, conditionA,'C'));
                      printA.start();
                      Thread.sleep(100);
                      printB.start();
                      Thread.sleep(100);
                      printC.start();
                  }
              }

                18、手写消费者生产者模式

                public class Storage {
                    private static int MAX_VALUE = 100;
                    private List<Object> list = new ArrayList<>();
                    public void produce(int num) {
                        synchronized (list) {
                            while (list.size() + num > MAX_VALUE) {
                                System.out.println("暂时不能执行生产任务");
                                try {
                                    list.wait();
                                } catch (InterruptedException e) {
                                    e.printStackTrace();
                                }
                            }
                            for (int i = 0; i < num; i++) {
                                list.add(new Object());
                            }
                            System.out.println("已生产产品数"+num+" 仓库容量"+list.size());
                            list.notifyAll();
                        }
                    }
                
                    public void consume(int num) {
                        synchronized (list) {
                            while (list.size() < num) {
                                System.out.println("暂时不能执行消费任务");
                                try {
                                    list.wait();
                                } catch (InterruptedException e) {
                                    e.printStackTrace();
                                }
                            }
                            for (int i = 0; i < num; i++) {
                                list.remove(0);
                            }
                            System.out.println("已消费产品数"+num+" 仓库容量" + list.size());
                            list.notifyAll();
                        }
                    }
                }
                
                public class Producer extends Thread {
                    private int num;
                    private Storage storage;
                    public Producer(Storage storage) {
                        this.storage = storage;
                    }
                    public void setNum(int num) {
                        this.num = num;
                    }
                    public void run() {
                        storage.produce(this.num);
                    }
                }
                
                public class Customer extends Thread {
                    private int num;
                    private Storage storage;
                    public Customer(Storage storage) {
                        this.storage = storage;
                    }
                    public void setNum(int num) {
                        this.num = num;
                    }
                    public void run() {
                        storage.consume(this.num);
                    }
                }
                
                public class Test {
                    public static void main(String[] args) {
                        Storage storage = new Storage();
                        Producer p1 = new Producer(storage);
                        Producer p2 = new Producer(storage);
                        Producer p3 = new Producer(storage);
                        Producer p4 = new Producer(storage);
                        Customer c1 = new Customer(storage);
                        Customer c2 = new Customer(storage);
                        Customer c3 = new Customer(storage);
                        p1.setNum(10);
                        p2.setNum(20);
                        p3.setNum(80);
                        c1.setNum(50);
                        c2.setNum(20);
                        c3.setNum(20);
                        c1.start();
                        c2.start();
                        c3.start();
                        p1.start();
                        p2.start();
                        p3.start();
                    }
                }

                21、交替打印FooBar

                  //手太阴肺经 BLOCKING Queue
                  public class FooBar {
                      private int n;
                      private BlockingQueue<Integer> bar = new LinkedBlockingQueue<>(1);
                      private BlockingQueue<Integer> foo = new LinkedBlockingQueue<>(1);
                      public FooBar(int n) {
                          this.n = n;
                      }
                      public void foo(Runnable printFoo) throws InterruptedException {
                          for (int i = 0; i < n; i++) {
                              foo.put(i);
                              printFoo.run();
                              bar.put(i);
                          }
                      }
                      public void bar(Runnable printBar) throws InterruptedException {
                          for (int i = 0; i < n; i++) {
                              bar.take();
                              printBar.run();
                              foo.take();
                          }
                      }
                  }
                  
                  //手阳明大肠经CyclicBarrier 控制先后
                  class FooBar6 {
                      private int n;
                      public FooBar6(int n) {
                          this.n = n;
                      }
                      CyclicBarrier cb = new CyclicBarrier(2);
                      volatile boolean fin = true;
                      public void foo(Runnable printFoo) throws InterruptedException {
                          for (int i = 0; i < n; i++) {
                              while(!fin);
                              printFoo.run();
                              fin = false;
                              try {
                                  cb.await();
                              } catch (BrokenBarrierException e) {}
                          }
                      }
                      public void bar(Runnable printBar) throws InterruptedException {
                          for (int i = 0; i < n; i++) {
                              try {
                                  cb.await();
                              } catch (BrokenBarrierException e) {}
                              printBar.run();
                              fin = true;
                          }
                      }
                  }
                  
                  //手少阴心经 自旋 + 让出CPU
                  class FooBar5 {
                      private int n;
                  
                      public FooBar5(int n) {
                          this.n = n;
                      }
                      volatile boolean permitFoo = true;
                      public void foo(Runnable printFoo) throws InterruptedException {
                          for (int i = 0; i < n; ) {
                              if(permitFoo) {
                                  printFoo.run();
                                  i++;
                                  permitFoo = false;
                              }else{
                                  Thread.yield();
                              }
                          }
                      }
                      public void bar(Runnable printBar) throws InterruptedException {
                          for (int i = 0; i < n; ) {
                              if(!permitFoo) {
                                  printBar.run();
                                  i++;
                                  permitFoo = true;
                              }else{
                                  Thread.yield();
                              }
                          }
                      }
                  }
                  
                  
                  
                  //手少阳三焦经 可重入锁 + Condition
                  class FooBar4 {
                      private int n;
                  
                      public FooBar4(int n) {
                          this.n = n;
                      }
                      Lock lock = new ReentrantLock(true);
                      private final Condition foo = lock.newCondition();
                      volatile boolean flag = true;
                      public void foo(Runnable printFoo) throws InterruptedException {
                          for (int i = 0; i < n; i++) {
                              lock.lock();
                              try {
                                  while(!flag) {
                                      foo.await();
                                  }
                                  printFoo.run();
                                  flag = false;
                                  foo.signal();
                              }finally {
                                  lock.unlock();
                              }
                          }
                      }
                  
                      public void bar(Runnable printBar) throws InterruptedException {
                          for (int i = 0; i < n;i++) {
                              lock.lock();
                              try {
                                  while(flag) {
                                      foo.await();
                                  }
                                  printBar.run();
                                  flag = true;
                                  foo.signal();
                              }finally {
                                  lock.unlock();
                              }
                          }
                      }
                  }
                  
                  //手厥阴心包经 synchronized + 标志位 + 唤醒
                  class FooBar3 {
                      private int n;
                      // 标志位,控制执行顺序,true执行printFoofalse执行printBar
                      private volatile boolean type = true;
                      private final Object foo=  new Object(); // 锁标志
                  
                      public FooBar3(int n) {
                          this.n = n;
                      }
                      public void foo(Runnable printFoo) throws InterruptedException {
                          for (int i = 0; i < n; i++) {
                              synchronized (foo) {
                                  while(!type){
                                      foo.wait();
                                  }
                                  printFoo.run();
                                  type = false;
                                  foo.notifyAll();
                              }
                          }
                      }
                  
                      public void bar(Runnable printBar) throws InterruptedException {
                          for (int i = 0; i < n; i++) {
                              synchronized (foo) {
                                  while(type){
                                      foo.wait();
                                  }
                                  printBar.run();
                                  type = true;
                                  foo.notifyAll();
                              }
                          }
                      }
                  }
                  
                  
                  //手太阳小肠经 信号量 适合控制顺序
                  class FooBar2 {
                      private int n;
                      private Semaphore foo = new Semaphore(1);
                      private Semaphore bar = new Semaphore(0);
                      public FooBar2(int n) {
                          this.n = n;
                      }
                  
                      public void foo(Runnable printFoo) throws InterruptedException {
                          for (int i = 0; i < n; i++) {
                              foo.acquire();
                              printFoo.run();
                              bar.release();
                          }
                      }
                      public void bar(Runnable printBar) throws InterruptedException {
                          for (int i = 0; i < n; i++) {
                              bar.acquire();
                              printBar.run();
                              foo.release();
                          }
                      }
                  }

                  分类: 算法

                  0 条评论

                  发表回复

                  Avatar placeholder

                  您的电子邮箱地址不会被公开。 必填项已用 * 标注

                  此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据

                  蜀ICP备16001794号
                  © 2014 - 2024 linpxing.cn All right reserved.