SQL 优化一般步骤
| 通过慢查日志等定位那些执行效率较低的 SQL 语句
| explain 分析SQL的执行计划
type 由上至下,效率越来越高:
- ALL 全表扫描
- index 索引全扫描
- range 索引范围扫描,常用语=,between,in 等操作
- ref 使用非唯一索引扫描或唯一索引前缀扫描,返回单条记录,常出现在关联查询中
- eq_ref 类似 ref,区别在于使用的是唯一索引,使用主键的关联查询
- const/system 单条记录,系统会把匹配行中的其他列作为常数处理,如主键或唯一索引查询
- null MySQL 不访问任何表或索引,直接返回结果
-
虽然上至下,效率越来越高,但是根据 cost 模型,假设有两个索引 idx1(a, b, c),idx2(a, c),SQL 为”select * from t where a = 1 and b in (1, 2) order by c”;如果走 idx1,那么是 type 为 range,如果走 idx2,那么 type 是 ref;当需要扫描的行数,使用 idx2 大约是 idx1 的 5 倍以上时,会用 idx1,否则会用 idx2
- Using filesort:MySQL 需要额外的一次传递,以找出如何按排序顺序检索行。通过根据联接类型浏览所有行并为所有匹配 WHERE 子句的行保存排序关键字和行的指针来完成排序。然后关键字被排序,并按排序顺序检索行;
- Using temporary:使用了临时表保存中间结果,性能特别差,需要重点优化;
- Using index:表示相应的 select 操作中使用了覆盖索引(Coveing Index),避免访问了表的数据行,效率不错!如果同时出现 using where,意味着无法直接通过索引查找来查询到符合条件的数据;
-
Using index condition:MySQL5.6 之后新增的 ICP,using index condtion 就是使用了 ICP(索引下推),在存储引擎层进行数据过滤,而不是在服务层过滤,利用索引现有的数据减少回表的数据。
| show profile 分析
SHOW PROFILES ;
SHOW PROFILE FOR QUERY #{id};
| trace
set optimizer_trace="enabled=on";
set optimizer_trace_max_mem_size=1000000;
select * from information_schema.optimizer_trace;
| 确定问题并采用相应的措施
如下:
- 优化索引
- 优化 SQL 语句:修改 SQL、IN 查询分段、时间查询分段、基于上一次数据过滤
- 改用其他实现方式:ES、数仓等
-
数据碎片处理
场景分析
| 案例 1:最左匹配
KEY `idx_shopid_orderno` (`shop_id`,`order_no`)
select * from _t where orderno=''
| 案例 2:隐式转换
KEY `idx_mobile` (`mobile`)
select * from _user where mobile=12345678901
隐式转换相当于在索引上做运算,会让索引失效。mobile 是字符类型,使用了数字,应该使用字符串匹配,否则 MySQL 会用到隐式替换,导致索引失效。
| 案例 3:大分页
KEY `idx_a_b_c` (`a`, `b`, `c`)
select * from _t where a = 1 and b = 2 order by c desc limit 10000, 10;
对于大分页的场景,可以优先让产品优化需求,如果没有优化的,有如下两种优化方式:
- 一种是把上一次的最后一条数据,也即上面的 c 传过来,然后做“c
-
另一种是采用延迟关联的方式进行处理,减少 SQL 回表,但是要记得索引需要完全覆盖才有效果。
select t1.* from _t t1, (select id from _t where a = 1 and b = 2 order by c desc limit 10000, 10) t2 where t1.id = t2.id;
| 案例 4:in + order by
KEY `idx_shopid_status_created` (`shop_id`, `order_status`, `created_at`)
select * from _order where shop_id = 1 and order_status in (1, 2, 3) order by created_at desc limit 10
in 查询在 MySQL 底层是通过 n*m 的方式去搜索,类似 union,但是效率比 union 高。
in 查询在进行 cost 代价计算时(代价 = 元组数 * IO 平均值),是通过将 in 包含的数值,一条条去查询获取元组数的,因此这个计算过程会比较的慢。
所以 MySQL 设置了个临界值(eq_range_index_dive_limit),5.6 之后超过这个临界值后该列的 cost 就不参与计算了。因此会导致执行计划选择不准确。
默认是 200,即 in 条件超过了 200 个数据,会导致 in 的代价计算存在问题,可能会导致 MySQL 选择的索引不准确。
| 案例 5:范围查询阻断,后续字段不能走索引
KEY `idx_shopid_created_status` (`shop_id`, `created_at`, `order_status`)
select * from _order where shop_id = 1 and created_at > '2021-01-01 00:00:00' and order_status = 10
范围查询还有“IN、between”。
| 案例 6:不等于、不包含不能用到索引的快速搜索
select * from _order where shop_id=1 and order_status not in (1,2)
select * from _order where shop_id=1 and order_status != 1
在索引上,避免使用 NOT、!=、、!、NOT EXISTS、NOT IN、NOT LIKE等。
| 案例 7:优化器选择不使用索引的情况
select * from _order where order_status = 1
查询出所有未支付的订单,一般这种订单是很少的,即使建了索引,也没法使用索引。
| 案例 8:复杂查询
select sum(amt) from _t where a = 1 and b in (1, 2, 3) and c > '2020-01-01';
select * from _t where a = 1 and b in (1, 2, 3) and c > '2020-01-01' limit 10;
| 案例 9:asc 和 desc 混用
select * from _t where a=1 order by b desc, c asc
| 案例 10:大数据
那么需要注意,频繁的清理数据,会照成数据碎片,需要联系 DBA 进行数据碎片处理。
文章来源:https://c1n.cn/tEsnA
————- END ————-
0 条评论